|
<num> | (<mag>) | C |
|
+ | (x|<num> y|<num> => <num>) | G |
|
| returns the sum of its arguments. | |
|
- | (x|<num> y|<num> => <num>) | G |
|
| returns the difference of its arguments. | |
|
* | (x|<num> y|<num> => <num>) | G |
|
| returns the product of its arguments. | |
|
/ | (x|<num> y|<num> => <num>) | G |
|
| returns the quotient of its arguments.
| |
|
round | (x|<num> => <int>) | G |
|
| returns closest integer to x. If x is exactly between
two integers then the implementation is free to return either integer. | |
|
round-to | (x|<num> n|<int> => <flo>) | G |
|
| returns x to closest flo n digits precision. | |
|
floor | (x|<num> => (tup <int> rem|<num>)) | G |
|
| returns an integer by truncating x towards negative infinity. | |
|
ceil | (x|<num> => (tup <int> rem|<num>)) | G |
|
| returns an integer by truncating x towards positive infinity. | |
|
trunc | (x|<num> => (tup <int> rem|<num>)) | G |
|
| returns an integer by truncating x towards zero. | |
|
mod | (x|<num> y|<num> => <num>) | G |
|
| returns the remainder after taking the floor of the quotient of
x and y. | |
|
div | (x|<num> y|<num> => <num>) | G |
|
| returns the trunc of the quotient of x and y. | |
|
rem | (x|<num> y|<num> => <num>) | G |
|
| returns remainder after dividing x by y. | |
|
pow | (x|<num> e|<num> => <num>) | G |
|
| returns x raised to the e power. | |
|
exp | (x|<num> => <num>) | G |
|
| == (pow $e x) | |
|
sqrt | (x|<num> => <num>) | G |
|
| returns the square root of x. | |
|
pos? | (x|<num> => <log>) | G |
|
| == (> x 0) | |
|
zero? | (x|<num> => <log>) | G |
|
| == (= x 0) | |
|
neg? | (x|<num> => <log>) | G |
|
| == (< x 0) | |
|
neg | (x|<num> => <num>) | G |
|
| == (- 0 x) | |
|
abs | (x|<num> => <num>) | G |
|
| == (if (neg? x) (neg x) x) | |
|
num-to-str-base | (x|<num> b|<int> => <str>) | G |
|
| returns string representation of x in base b. | |
|
num-to-str | (x|<num> => <str>) | G |
|
| equiv (num-to-str-base x 10) | |
|
str-to-num | (x|<str> => <num>) | G |
|
| returns closest number corresponding to string x. | |
|
INCF | (INCF ,name) | S |
|
| == (SET ,name (+ ,name 1)) | |
|
| (INCF (,name ,@rest)) | S |
|
| == (SET (,name ,@rest) (+ (,name ,@rest) 1)) | |
|
DECF | (DECF ,name) | S |
|
| == (SET ,name (+ ,name 1)) | |
|
| (DECF (,name ,@rest)) | S |
|
| == (SET (,name ,@rest) (+ (,name ,@rest) 1)) | |
|
$e | <flo> | I |
|
$pi | <flo> | I |
|
sqrt | (x|<num> => <num>) | G |
|
log | (x|<num> => <num>) | G |
|
logn | (x|<num> b|<num> => <num>) | G |
|
sin | (x|<num> => <num>) | G |
|
cos | (x|<num> => <num>) | G |
|
tan | (x|<num> => <num>) | G |
|
asin | (x|<num> => <num>) | G |
|
acos | (x|<num> => <num>) | G |
|
atan | (x|<num> => <num>) | G |
|
atan2 | (y|<num> x|<num> => <num>) | G |
|
sinh | (x|<num> => <num>) | G |
|
cosh | (x|<num> => <num>) | G |
|
tanh | (x|<num> => <num>) | G |
|
|
|
<int> | (<num>) | C |
|
| | (x|<int> y|<int> => <int>) | G |
|
| returns the logical inclusive or of its arguments. | |
|
& | (x|<int> y|<int> => <int>) | G |
|
| returns the logical and or of its arguments. | |
|
^ | ((x|<int> y|<int> => <int>)) | G |
|
| == (| (& x (~ y)) (& (~ x) y)) | |
|
~ | (x|<int> => <int>) | G |
|
| returns the logical complement of its argument. | |
|
bit? | (x|<int> n|<int> => <log>) | G |
|
| returns true iff nth bit is 1. | |
|
even? | (x|<int> => <log>) | G |
|
odd? | (x|<int> => <log>) | G |
|
gcd | (x|<int> y|<int> => <int>) | G |
|
| greatest common denominator. | |
|
lcm | (x|<int> y|<int> => <int>) | G |
|
| least common multiple. | |
|
<< | (x|<int> n|<int> => <int>) | G |
|
| returns n bit shift left of x. | |
|
>> | (x|<int> n|<int> => <int>) | G |
|
| returns signed n bit shift right of x. | |
|
>>> | (x|<int> n|<int> => <int>) | G |
|
| returns unsigned n bit shift right of x. | |
|
|